Statistics 3

Review Exercise 1

1 a A census observes every member of a population.
A disadvantage of a census is it would be time-consuming to get opinions from all the employees. OR It would be difficult/time-consuming to process the large amount of data from a census.
b Opportunity sampling.
c It is not a random sample. The sample only includes cleaners, there are no types of other employees such as managers.
The first 50 cleaners to leave may be in the same group/shift so may share the same views.
d i Allocate a number from 1-550 to all employees.
For a sample of 50 , you need every eleventh person since $550 \div 50=11$.
Select the first employee using a random number from 1-11, then select every eleventh person from the list; e.g. if person 8 is then the sample is $8,19,30,41 \ldots$
ii For this sample, you need $\frac{55}{550} \times 50=5$ managers and $\frac{495}{550} \times 50=45$ cleaners.
Label the managers 1-55 and the cleaners 1-495.
Use random numbers to select 5 managers and 45 cleaners.
2 a Advantage - a sampling frame is not required.
Disadvantage - sampling errors cannot be calculated.
b Advantage - very quick to administer. Disadvantage - may not be representative of the population.

3 a 390 and 372
b The list is alphabetical and has not been sorted by gender.
c Stratified sampling
4 Label standard rooms between 1 and 180.
Use random numbers in the range $1-180$ to select 18 rooms.
Label premier rooms between 1 and 100 .
Use random numbers in the range $1-100$ to select 10 rooms.
Label executive rooms between 1 and 40 .
Use random numbers in the range $1-40$ to select 4 rooms.

5 a $\mathrm{P}(F<3 R)=\mathrm{P}(F-3 R<0)$
Let $X=F-3 R$
$\mathrm{E}(X)=\mathrm{E}(F)-3 \mathrm{E}(R)=238-3 \times 82=-8$
$\operatorname{Var}(X)=\operatorname{Var}(F)+3^{2} \operatorname{Var}(R)=7^{2}+3^{2} \times 3^{2}=130$
Hence $X \sim \mathrm{~N}(-8,130)$
$\mathrm{P}(X<0)=0.7586$ (4 d.p.) \quad (from calculator or tables)
b The assumption made is that the duration of the two rides are independent.
Validity: this is likely to be the case - two separate control panels operate each ride.
c $D=R_{1}+R_{2}+R_{3}$
$\mathrm{E}(D)=\mathrm{E}(R)+\mathrm{E}(R)+\mathrm{E}(R)=3 \times 82=246$
$\operatorname{Var}(D)=\operatorname{Var}(R)+\operatorname{Var}(R)+\operatorname{Var}(R)=3 \times 3^{2}=27$
Hence $D \sim \mathrm{~N}(246,27)$
d $\mathrm{P}(|F-D|<10)=\mathrm{P}(-10<F-D<10)$
Let $Y=F-D$
$\mathrm{E}(Y)=238-246=-8$
$\operatorname{Var}(Y)=49+27=76$
Hence $Y \sim \mathrm{~N}(-8,76)$
$\mathrm{P}(-10<Y<10)=\mathrm{P}(Y<10)-\mathrm{P}(Y<-10)=0.5713$ (4d.p.)
6 a $\mathrm{E}(R)=\mathrm{E}(X)+\mathrm{E}(Y)=20+10=30$
b $\operatorname{Var}(R)=\operatorname{Var}(X)+\operatorname{Var}(Y)=4+0.84=4.84$
c $R \sim \mathrm{~N}(30,4.84)$ from parts \mathbf{a} and \mathbf{b}
$\mathrm{P}(28.9<R<32.64)=\mathrm{P}(R<32.64)-\mathrm{P}(R<28.9)=0.8849-0.3085=0.5764$ (4d.p.)

INTERNATIONAL A LEVEL

$7 \bar{X} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right), \bar{X}=\frac{X_{1}+X_{2}+X_{3}}{3}$ and $\mathrm{P}\left(\frac{X_{1}+X_{2}}{2}>\bar{X}+k \sigma\right)=0.2$

$$
\begin{aligned}
& \mathrm{E}\left(\frac{X_{1}+X_{2}}{2}-\bar{X}\right)=0 \\
& \frac{X_{1}+X_{2}}{2}-\bar{X}=\frac{X_{1}+X_{2}}{2}-\frac{X_{1}+X_{2}+X_{3}}{3} \\
& =\frac{1}{6}\left(X_{1}+X_{2}-2 X_{3}\right) \\
& \operatorname{Var}\left(\frac{X_{1}+X_{2}}{2}-\bar{X}\right)=\left(\frac{1}{6}\right)^{2}\left(\sigma^{2}+\sigma^{2}+(-2 \sigma)^{2}\right) \\
& =\frac{\sigma^{2}}{6} \\
& \mathrm{P}\left(\frac{X_{1}+X_{2}}{2}>\bar{X}+k \sigma\right)=0.2 \\
& \mathrm{P}\left(Z>\frac{(\bar{X}+k \sigma)-\bar{X}}{\sqrt{\frac{\sigma^{2}}{6}}}\right)=0.2 \\
& P(Z<\sqrt{6} k)=0.8 \\
& \sqrt{6} k=0.8416 \\
& k=0.3436
\end{aligned}
$$

8 Possible totals are shown in the table.

Mean value	Probability
0.1	$\frac{2}{10} \times \frac{1}{9}=\frac{2}{90}$
0.3	$2\left(\frac{3}{10} \times \frac{2}{9}\right)=\frac{12}{90}$
0.55	$2\left(\frac{5}{10} \times \frac{2}{9}\right)=\frac{20}{90}$
0.5	$2\left(\frac{3}{10} \times \frac{2}{9}=\frac{6}{90}\right)=\frac{30}{90}$
0.75	$\frac{5}{10} \times \frac{4}{9}=\frac{20}{90}$
1	

Statistics 3

$9 C=2 A+5 B$ where $A \sim \mathrm{~N}\left(15,1.5^{2}\right)$ and $B \sim \mathrm{~N}\left(\mu, 2^{2}\right)$

$$
\begin{aligned}
\mathrm{E}(C) & = \\
= & \times 15+5 \times \mu \\
= & 30+5 \mu \\
\operatorname{Var}(C) & =2^{2} \times 1.5^{2}+5^{2} \times 2^{2} \\
& =109
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& C \sim \mathrm{~N}(30+5 \mu, 109) \\
& \mathrm{P}(C<83.5)=0.9 \\
& \mathrm{P}\left(Z<\frac{83.5-(30+5 \mu)}{\sqrt{109}}\right)=0.9 \\
& \frac{83.5-(30+5 \mu)}{\sqrt{109}}=1.282 \\
& \frac{53.5-5 \mu}{\sqrt{109}}=1.282 \\
& \mu=\frac{53.5-1.282 \sqrt{109}}{5} \\
& \mu=8.02(3 \text { s.f. })
\end{aligned}
$$

$10 A \sim \mathrm{~N}\left(24,4^{2}\right)$ and $X \sim \mathrm{~N}\left(20,3^{2}\right)$

$$
\begin{aligned}
& B=3 X+\sum_{i=1}^{4} A_{i} \\
& =3 X+A_{1}+A_{2}+A_{3}+A_{4} \\
& \mathrm{E}(B)=3 \mathrm{E}(X)+\mathrm{E}\left(A_{1}\right)+\mathrm{E}\left(A_{2}\right)+\mathrm{E}\left(A_{3}\right)+\mathrm{E}\left(A_{4}\right) \\
& =3 \times 20+4 \times 24 \\
& =156 \\
& \operatorname{Var}(B)=3^{2} \operatorname{Var}(X)+\operatorname{Var}\left(A_{1}\right)+\operatorname{Var}\left(A_{2}\right)+\operatorname{Var}\left(A_{3}\right)+\operatorname{Var}\left(A_{4}\right) \\
& =3^{2} \times 3^{2}+4 \times 4^{2} \\
& =145 \\
& \mathrm{P}(B>156)=0.5 \\
& \mathrm{P}(B \leq 170)=1-\mathrm{P}\left(Z<\frac{170-156}{\sqrt{145}}\right) \\
& =\mathrm{P}(Z<1.1626) \\
& =0.8775 \\
& \mathrm{P}(156<B \leq 170)=0.8775-0.5 \\
& =0.3775 \\
& \mathrm{P}(B \leq 170 \mid B>156)=\frac{0.3775}{0.5} \\
& =0.755 \text { (} 3 \text { s.f.) }
\end{aligned}
$$

INTERNATIONAL A LEVEL

Statistics 3

11 a $\mathrm{E}(\bar{X})=\frac{(5 \alpha-9)+(\alpha-3)}{2}$

$$
=3 \alpha-6
$$

$3 \alpha-6 \neq \alpha$
Therefore $\mathrm{E}(\bar{X})$ is a biased estimator.
The bias is $(3 \alpha-6)-\alpha=2 \alpha-6$
b $\mathrm{E}(Y)=\mathrm{E}(k \bar{X}+2)$

$$
=k(3 \alpha-6)+2
$$

and if Y is an unbiased estimator for α then $\mathrm{E}(Y)-\alpha=0$.
So it follows that:

$$
\begin{aligned}
& k(3 \alpha-6)+2-\alpha=0 \\
& 3 k(\alpha-2)=\alpha-2 \\
& 3 k=1 \\
& k=\frac{1}{3}
\end{aligned}
$$

c From the data:
$\bar{X}=36.36$
Using

$$
\begin{aligned}
Y & =k \bar{X}+2 \\
& =\frac{1}{3} \bar{X}+2 \\
& =\frac{1}{3} \times 36.36+2 \\
& =14.12
\end{aligned}
$$

From $X \sim \mathrm{U}(\alpha-3,5 \alpha-9)$, the max value that X can take is estimated as:

$$
\begin{aligned}
5 \alpha-9 & =5 \times 14.12-9 \\
& =61.6
\end{aligned}
$$

Statistics 3

12 a Let X be the total weight of 4 randomly chosen adult men.
$X=M_{1}+M_{2}+M_{3}+M_{4}$
$\mathrm{E}(X)=4 \times 84=336$
$\operatorname{Var}(X)=4 \times 11^{2}=484$
$X \sim \mathrm{~N}(336,484)$
$\mathrm{P}(X<350)=0.7377$ (4 d.p.)
b Let $M \sim \mathrm{~N}(84,121)$ and $W \sim \mathrm{~N}(62,100)$ and $Y=M-1.5 W$
$\mathrm{E}(Y)=84-1.5 \times 62=-9$
$\operatorname{Var}(Y)=\operatorname{Var}(M)+1.5^{2} \operatorname{Var}(W)=11^{2}+1.5^{2} \times 10^{2}=346$
So $Y \sim \mathrm{~N}(-9,346)$, and $P(Y<0)=0.6858$ (4d.p.)
13a $\mathrm{E}(D)=\mathrm{E}(A)-3 \mathrm{E}(B)+4 \mathrm{E}(C)=5-3 \times 7+4 \times 9=20$
$\operatorname{Var}(D)=\operatorname{Var}(A)+3^{2} \operatorname{Var}(B)+4^{2} \operatorname{Var}(C)=2^{2}+9 \times 3^{2}+16 \times 4^{2}=341$
So $D \sim \mathrm{~N}(20,341)$, and $\mathrm{P}(D<44)=0.9031$ (4 d.p.)
b $\mathrm{E}(X)=\mathrm{E}(A)-3 \mathrm{E}(B)+4 \mathrm{E}(C)=5-3 \times 7+4 \times 9=20$
$\operatorname{Var}(D)=\operatorname{Var}(A)+\operatorname{Var}(B)+\operatorname{Var}(B)+\operatorname{Var}(B)+4^{2} \operatorname{Var}(C)=2^{2}+3 \times 3^{2}+16 \times 4^{2}=287$
So $X \sim \mathrm{~N}(20,287)$, and $\mathrm{P}(X>0)=1-\mathrm{P}(X \leqslant 0)=1-0.1189=0.8811$ (4 d.p.)
14 a Let $W=C_{1}-C_{2}$
$\mathrm{E}(W)=350-350=0$
$\operatorname{Var}(W)=8+8=16$
So $W \sim \mathrm{~N}(0,16)$
$\mathrm{P}(|W|>6)=1-\mathrm{P}(W<6)+\mathrm{P}(W<-6)=0.0668+0.0668=0.1336$ (4d.p.)
b Let $X=C-L$

$$
\mathrm{E}(X)=350-345=5
$$

$\operatorname{Var}(X)=8+17=25$
So $X \sim \mathrm{~N}(5,25)$
$\mathrm{P}(X>0)=1-\mathrm{P}(X<0)=1-0.1587=0.8413$ (4 d.p.)
c Let $Y=\sum_{i=1}^{24} C_{i}+B$
$\mathrm{E}(Y)=24 \times 350+100=8500$
$\operatorname{Var}(Y)=24 \times 8+2^{2}=196$
So $Y \sim \mathrm{~N}(8500,196)$

$$
\mathrm{P}(8510<Y<8520)=\mathrm{P}(Y<8520)-\mathrm{P}(Y<8510)=0.92343-0.76247=0.1610 \text { (4 d.p.) }
$$

d All random variables (each can of cola and the box) are independent and normally distributed.

INTERNATIONAL A LEVEL

15 a

$$
\begin{aligned}
& \bar{x}=\frac{361.6}{80}=4.52 \\
& \hat{\sigma}^{2}=s^{2}=\frac{1753.95-80 \times \bar{x}^{2}}{79}=1.5128
\end{aligned} \quad \begin{aligned}
& \text { Using } \frac{\sum x^{2}-n \bar{x}^{2}}{n-1} \text { or } \frac{n}{n-1}\left(\frac{\sum x^{2}}{n}-\bar{x}^{2}\right)
\end{aligned}
$$

$$
\text { or } \hat{\sigma}^{2}=s^{2}=\frac{80}{79} \times\left(\frac{1753.95}{80}-\bar{x}^{2}\right)=1.5128
$$

b $\mathrm{H}_{0}: \mu_{A}=\mu_{B} \quad \mathrm{H}_{1}: \mu_{A}>\mu_{B}$
This is a difference of means test. When stating hypotheses you must make it clear which mean is greater when it is a one-tailed test.

$$
\begin{array}{rlr}
z & =\frac{4.52-4.06}{\sqrt{\frac{1.5128}{80}+\frac{2.50}{60}}}=\left(\frac{0.46}{\sqrt{0.060576}}\right.
\end{array} \longleftarrow \quad \begin{array}{|r}
\\
\\
\end{array}=1.8689 \text { or }-1.8689 \text { if } B-A \text { was used. } z=\frac{(\bar{A}-\bar{B})-\left(\mu_{A}-\mu_{B}\right)}{\sqrt{\frac{\sigma_{A}^{2}}{n_{A}}+\frac{\sigma_{B}^{2}}{n_{B}}}}
$$

One tail c.v. is $z=1.6449$
$1.87>1.6449$ so reject H_{0}.

There is evidence that diet A is better than $\operatorname{diet} B$ or evidence that (mean) weight lost in the first week using State your conclusion in the context of the question. $\operatorname{diet} A$ is greater than using $\operatorname{diet} B$.
c CLT enables you to assume that \bar{A} and \bar{B} are normally distributed since both samples are large.
d Assumed $\sigma_{A}^{2}=s_{A}^{2}$ and $\sigma_{B}^{2}=s_{B}^{2}$

Variance must be known to use the test.
Remember, σ^{2} is the population variance and s^{2} is an unbiased estimator of the population variance.

16

$$
\begin{align*}
& 123.5=\bar{x}-2.5758 \times \frac{\sigma}{\sqrt{n}} \tag{1}\\
& 154.7=\bar{x}-2.5758 \times \frac{\sigma}{\sqrt{n}} \\
& \begin{array}{c}
\bar{x}=\frac{1}{2}(123.5+154.7)=139.1 \\
2.5758 \times \frac{\sigma}{\sqrt{n}}=154.7-139.1 \\
=15.6 \\
\frac{\sigma}{\sqrt{n}}=\frac{15.6}{2.5758}
\end{array}
\end{align*}
$$

So 95% C.I. $=139.1 \pm 1.9600 \times \frac{15.6}{2.5758}$
$=(127.22 \ldots, 150.97 \ldots)$
99% confidence interval, so each tail is 0.05 . Use the percentage point table and quote the figure in full. C.I.
$\bar{x} \pm 2.5758 \times \frac{\sigma}{\sqrt{n}}$

Add equations (1) and (2) to find \bar{x} or calculate the mean of the given limits.

Substitute \bar{x} into equation (1) or (2) to find $\frac{\sigma}{\sqrt{n}}$
95% confidence interval, so each tail is 0.025 .
Substitute in \bar{x} and $\frac{\sigma}{\sqrt{n}}$

$$
=(127,151)
$$

Answers should be given to at least 3 significant figures.

INTERNATIONAL A LEVEL

Statistics 3

17 a

$$
\begin{aligned}
\bar{X} & =\frac{500}{10}=50 \\
s^{2} & =\frac{25001.74-10 \times 50^{2}}{9} \\
& =0.193
\end{aligned}
$$

b i For 95% confidence interval, z value is 1.96 .
Confidence interval is therefore:

$$
\begin{aligned}
& \left(50-1.96 \times \frac{0.5}{\sqrt{10}}, 50+1.96 \times \frac{0.5}{\sqrt{10}}\right) \\
& =(49.690 \ldots, 50.309 \ldots) \\
& =(49.7,50.3)
\end{aligned}
$$

ii For 99% confidence interval, z value is 2.5758 .
Confidence interval is therefore:

$$
\begin{aligned}
& \left(50-2.5758 \times \frac{0.5}{\sqrt{10}}, 50+2.5758 \times \frac{0.5}{\sqrt{10}}\right) \\
& =(49.592 \ldots, 50.407 \ldots) \\
& =(49.6,50.4)
\end{aligned}
$$

18 a

$$
\begin{aligned}
\hat{\mu} & =\bar{x}=\frac{82+98+140+110+90+125+150+130+70+110}{10} & & \text { Using } \\
& =110.5 & & \\
s^{2} & =\frac{128153-10 \times 110.5^{2}}{9} & & \text { O50 }
\end{aligned}
$$

$$
=672.28
$$

b 95% confidence limits are:
$110.5 \pm 1.96 \times \frac{25}{\sqrt{10}}$
$=(95.005,125.995)$
$=(95.0,126)$
95% confidence interval, so each tail is 0.025 . Use the percentage point table and quote the figure in full.
C.I.: $\bar{x} \pm 1.9600 \times \frac{\sigma}{\sqrt{n}}$

Answers should be given to at least 3 significant figures.
c $0.95^{15}=0.46329 \ldots=0.4633$ (4 d.p.)

INTERNATIONAL A LEVEL

19 a

$$
\bar{x}=\left(\frac{6046}{36}=\right) 167.94 \ldots \longleftarrow \operatorname{Using} \frac{\sum x^{2}-n \bar{x}^{2}}{n-1} \text { or } \frac{n}{n-1}\left(\frac{\sum x^{2}}{n}-\bar{x}^{2}\right)
$$

$$
\begin{aligned}
s^{2} & =\frac{1016338-36 \times \bar{x}^{2}}{35} \\
& =27.0
\end{aligned}
$$

b 99% confidence interval is: $\bar{x} \pm 2.5758 \times \frac{5.1}{\sqrt{36}}$
$=167.94 \pm 2.5758 \times \frac{5.1}{\sqrt{36}}$
99% confidence interval, so each tail is 0.005 . Use the percentage point table and quote the figure in full.
C.I.: $\bar{x} \pm 2.5758 \times \frac{\sigma}{\sqrt{n}}$

$$
\begin{aligned}
& =(167.75,170.13) \\
& =(166,170)
\end{aligned}
$$

Answers should be given to at least 3 significant figures.

20 a Let X represent repair time

$$
\therefore \sum x=1435 \therefore \bar{x}=\frac{1435}{5}=287 \longleftarrow \text { Using } \frac{\sum x^{2}-n \bar{x}^{2}}{n-1} \text { or } \frac{n}{n-1}\left(\frac{\sum x^{2}}{n}-\bar{x}^{2}\right)
$$

$$
\sum x^{2}=442575
$$

$$
=7682.5
$$

b $\mathrm{P}(|\mu-\hat{\mu}|)<20=0.95$
$\therefore 1.96 \times \frac{\sigma}{\sqrt{n}}=20$
$\therefore n=\frac{1.96^{2} \sigma^{2}}{20^{2}}=\frac{1.96^{2} \sigma^{2}}{400}=\frac{1.96^{2} \times 100^{2}}{400}=96.04$

$$
\therefore s^{2}=\frac{442575-5 \times 287^{2}}{4}
$$

\therefore Sample size $(\geqslant) 97$ required

Statistics 3

21 a Let W_{C} be the weight of a slice of cheesecake.

$$
W_{C} \sim \mathrm{~N}\left(135,3^{2}\right)
$$

Let W_{B} be the weight of the box.

$$
W_{B} \sim \mathrm{~N}\left(100,6^{2}\right)
$$

Let W_{T} be the total weight of the box and 12 slices of cheesecake.

$$
\begin{aligned}
& \mathrm{E}\left(W_{T}\right)=\mathrm{E}\left(W_{B}\right)+12 \mathrm{E}\left(W_{C}\right) \\
& =100+12 \times 135 \\
& = \\
& =1720 \\
& \begin{aligned}
\operatorname{Var}\left(W_{T}\right) & =\operatorname{Var}\left(W_{B}\right)+12 \operatorname{Var}\left(W_{C}\right) \\
= & 6^{2}+12 \times 3^{2} \\
= & 144 \\
\mathrm{P}\left(W_{T}>1700\right) & =1-\mathrm{P}\left(W_{T}<1700\right) \\
& =1-\mathrm{P}\left(Z_{T}<\frac{1700-1720}{\sqrt{144}}\right) \\
& =1-\mathrm{P}\left(Z_{T}<-\frac{5}{3}\right) \\
& =1-0.04779 \\
& =1-0.04779 \\
& =0.9522
\end{aligned}
\end{aligned}
$$

b The weights of each slice are independent.
22 A 95% confidence interval is
$\bar{x} \pm 1.96 \times \frac{\sigma}{\sqrt{n}}$
$\bar{x}+1.96 \times \frac{1.3}{\sqrt{n}}=15.7096$
$\bar{x}-1.96 \times \frac{1.3}{\sqrt{n}}=14.6904$
$2 \times 1.96 \times \frac{1.3}{\sqrt{n}}=15.7096-14.6904$
$\frac{1}{\sqrt{n}}=\frac{15.7096-14.6904}{2 \times 1.96 \times 1.3}$
$\sqrt{n}=\frac{2 \times 1.96 \times 1.3}{15.7096-14.6904}$
$\sqrt{n}=5$
$n=25$

Statistics 3
 Solution Bank

23 a A $c \%$ confidence interval is
$\bar{x} \pm z \times \frac{\sigma}{\sqrt{n}}$
$\bar{x}+z \times \frac{3.6}{\sqrt{36}}=16.2364 \Rightarrow \bar{x}+0.6 z=16.2364$
$\bar{x}-z \times \frac{3.6}{\sqrt{36}}=12.9636 \Rightarrow \bar{x}-0.6 z=12.9636$
$2 \bar{x}=29.2$
$\bar{x}=14.6$
b Since

$$
\begin{aligned}
& \bar{x}+0.6 z=16.2364 \\
& 14.6+0.6 z=16.2364 \\
& z=2.7273 \\
& P(Z<2.7273)=0.997
\end{aligned}
$$

By symmetry,
$P(-2.7273<Z<2.7273)=0.994$
Therefore a 99.4% confidence interval.

Challenge

a $\mathrm{T}=\frac{2 X_{1}}{3}-\underline{X}_{2}+\frac{5 X_{3}}{6}$

$$
\begin{aligned}
\mathrm{E}(\mathrm{~T}) & =\mathrm{E}\left(\frac{2 X_{1}}{3}-\frac{X_{2}}{2}+\frac{5 X_{3}}{6}\right)=\mathrm{E}\left(\frac{2 X_{1}}{3}\right)-\mathrm{E}\left(\frac{X_{2}}{2}\right)+\mathrm{E}\left(\frac{5 X_{3}}{6}\right) \\
& =\frac{2}{3} \mu-\frac{1}{2} \mu+\frac{5}{6} \mu=\mu
\end{aligned}
$$

Therefore T is an unbiased estimator of μ
b $\hat{\mu}=a X_{1}+b X_{2}$

$$
\operatorname{Var}(\hat{\mu})=\operatorname{Var}\left(a X_{1}+b \underset{X}{X}\right)=a^{2} \operatorname{Var}\left(X_{1}\right)+b^{2} \operatorname{Var}\left(X_{2}\right)
$$

$$
a+b=1, \text { so } b=a-1
$$

$$
\begin{aligned}
\therefore \operatorname{Var}(\hat{\mu}) & =a^{2} \operatorname{Var}\left(X_{1}\right)+(a-1)^{2} \operatorname{Var}\left(X_{2}\right) \\
& =\left(2 a^{2}-2 a+1\right) \sigma^{2}
\end{aligned}
$$

c Find the minimum of $\operatorname{Var}(\hat{\mu})$ by differentiating $\left(2 a^{2}-2 a+1\right)$ and setting equal to zero

$$
\frac{d}{d a}\left(2 a^{2}-2 a+1\right)=4 a-2=0
$$

$\therefore \quad$ minimum when $a=b=0.5$

